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Abstract

The time history of local flexibilities associated with a breathing crack in a rotating shaft is the concern of this paper.

Considering quasi-static approximation, the deflections of a circular cross-section beam presenting a crack of different

depths, due to bending or torsion loads are analyzed with the aid of a refined nonlinear contact-finite element procedure in

order to predict accurately the time-variant flexibility of the fractured shaft. This method predicts the partial contact of

crack surfaces, and it is appropriate to evaluate the instantaneous crack flexibilities. The bending load is applied in several

aperture angles, in order to simulate a rotating load on a fixed beam. Results obtained for the rotating beam can then be

used for the analysis of cracked, horizontal axis rotors. The effect of friction is also considered in the cracked area.

Portions of crack surfaces in contact are predicted, the direct and the cross-coupled flexibility coefficients are calculated by

applying energy principles. The numerical results compared with relevant previously published results, show high

consistency.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Shafts are amongst components subjected to perhaps the most arduous working conditions in high-
performance rotating equipment used in process and utility plants. Although usually quite robust and well
designed, shafts in operation are sometimes susceptible to serious defects that develop without much apparent
warning. They are prime candidates for fatigue cracks because of the rapidly fluctuating nature of stresses,
the presence of numerous stress raisers and possible design or manufacturing flaws. The growth of cracks in
the rotating components can cause severe accidents if undetected. The earlier the time of crack detection, the
smaller the effort, and expenses for repair. Cracks that always remain open are known as gaping cracks. They
operate like notches, are easy to mimic in a laboratory environment, and hence most experimental work is
focused on this particular type of cracks. If a cracked shaft rotates under the external loading, then the crack
opens and closes regularly per revolution: it breathes. The breathing mechanism is produced by the stress
distribution around the crack mainly due to the action of bending moment, while the effect of torsion is
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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negligible. Usually, shaft cracks breathe when crack sizes are small, running speeds are low and radial forces
are large. However, there is a lack of fundamental understanding about certain aspects of the crack breathing
mechanism. This involves not only the identification of variables affecting the crack breathing behavior, but
also the issues for evaluating fractured rotor dynamic response. It is also not yet entirely clear how partial
closure interacts with key variables of the problem. Obviously, the actual physical situation requires a model
that accounts for the crack breathing mechanism and for the interaction between external loading and
dynamic crack behavior. When crack contact occurs, the unknowns are the field singular behavior, the contact
region, and distribution of contact tractions on the closed region of the crack. The latter class of unknowns
does not exist in the case without crack closure. This type of complicated deformation of crack surfaces
constitutes a nonlinear problem difficult to be treated through classical analytical procedures. A suitable
numerical implementation for unknowns of the problem is thus required when partial crack closure occurs.

A crack introduces local flexibilities in the stiffness of the structure due to strain energy concentration.
Although local flexibilities representing the fracture in stationary structures are constant for open cracks, the
breathing mechanism causes their time dependence. In a fixed direction, local flexibilities of rotating shafts
change also with time due to the breathing mechanism. Evidently, the vibrational response of a rotating shaft
depends on the crack opening and closing pattern in one cycle. For the analysis of fractured shafts, the
technical literature proposes several models to quantify local effects introduced by the crack. According to the
simplest model, a hinge substitutes the crack and a local flexibility matrix describes the discontinuity
conditions enforced by the crack presence. The coefficients of the local flexibility matrix can be calculated
experimentally, as long as they depend on fracture severity and loading mode [1–4]. However, most of the
experimental results are obtained with a notched shaft (gaping crack case) rather than a cracked shaft due to
the difficultness of production of a geometrically controllable real crack in the laboratory. The hinge model is
mostly appropriate for one-dimensional (1D) approaches in analyzing dynamic problems of fractured shafts
[5–8]. In turn, local flexibilities can be calculated analytically or numerically for various loading cases,
according to the strain energy release rate (SERR) approach, under the linear elastic fracture mechanics
regime [9–13]. Crack geometry limitations of this approach clearly appear. The crack front must be straight,
and some physical stress intensity factors are not supported. For example, the stress intensity factor of
opening fracture mode tends to null value on the closed crack surface. An advanced approach in analyzing the
behavior of fractured structures is the substitution of the crack by a cracked element that embodies the
discontinuities imposed by the fracture and it is convenient for the application of finite element procedures
[14–16].

The inherent nonlinearity implied by the crack breathing mechanism demands for the development of more
sophisticated models. Among these, the switching crack model approximates the crack opening and closure
mechanism by a periodic switching function [17–19]. This model is very stiff and sometimes yields erroneous
structural responses. A better approximation represents the time variation of local flexibilities by an
appropriate Fourier cosine expansion of the switching function [20–22]. These models utilize the SERR
approach for the calculation of local flexibilities, and presume the fraction of crack-surface closure for the
prediction of time dependency. The semi-analytical character of these approximations makes them to be
attractive approaches of the problem. However, they are rough estimations due to the inherent weakness of
them being unknown the contact area between the crack surfaces, when the crack lies in arbitrary angular
position with respect to the longitudinal axis of the shaft and thus it is made a guess. An accurate model of the
breathing of crack demands application of full contact conditions between the crack surfaces. Three-
dimensional (3D) finite element analysis appears to hold special promise as an investigative tool for the study
of crack breathing mechanism. It should simultaneously involve the deformation of a loaded shaft, the crack
discontinuity, and the crack-surface interference. This method has been employed extensively in fracture
mechanics to model the stress singularity at the crack tip, which is always a major consideration and has to be
evaluated. One approach is to utilize singular elements. Among those, the quarter-point element has found
considerable popularity because of its accuracy and simplicity [23,24].

A brief search on the relevant literature reveals that, most scientific effort has been focused on the prediction
of fractured rotor dynamics rather than on the accurate simulation of the fracture itself. Recently, Bachschmid
and Tanzi [12] have looked at the straight front crack and there are numerical and experimental results for the
benchmark and comparison of the present work. Therefore, the exact time dependency of the crack breathing
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mechanism and its relationship with the aperture angle is yet partially unresolved. The aim of this work is to
study the effect of the crack breathing mechanism on the time-variant flexibility due to the crack in a rotating
shaft considering quasi-static approximation. The deflections of a circular cross-section cantilever beam
presenting a crack of different depths, due to bending or torsion loads are analyzed with the aid of an
advanced nonlinear contact-FEM procedure in order to predict accurately the time-variant flexibility of a
fractured shaft. This method predicts the partial contact of crack surfaces, and it is appropriate to evaluate the
instantaneous crack flexibilities. The bending load is applied in several aperture angles, in order to simulate a
rotating load on a fixed beam. Results obtained for the rotating beam can then be used for the analysis of
cracked, horizontal axis rotors. The effect of friction is also considered in the cracked area. Portions of crack
surfaces in contact are predicted, and the direct and the cross-coupled flexibility coefficients are calculated by
applying energy principles. For reasons of accuracy, the present numerical results are compared with relevant
previously published results.
2. Cracked shaft model

In this article, the deflections of a circular cross-section beam presenting a surface crack of different depths,
due to bending or twisting moments, are analyzed with the aid of a rather refined 3D model, which takes into
account the nonlinear contact constraints in the cracked area. Reasons of simplicity and reduction of the
computational effort impose quasi-static approximation of the response of the cracked structure. Without any
restriction on the generality and the applicability of the method, the shaft model chosen in the present analysis
has the form of a weightless cantilever beam with uniform cross-section (Fig. 1a). The beam has length 2L and
circular cross-section of radius R. At the middle of this beam, a crack presents with straight or curved front.
The curved front has radius of curvature R, while the maximum depth of the crack is a (Figs. 1b and c). In
order to study the effect of crack slope on the local flexibilities, the general case of a slant crack is considered
that forms yy, yz angles with respect to (x, y) and (x, z) planes, respectively.

The morphology of the proposed models is designed in such a way that allows for changes in crack
geometry. Thus, considering the crack depth and its angle as global design variables, parametric studies are
possible. This is accomplished by setting the crack orientation angles yy, yz, and the crack depth a as global
design variables. Thus the proposed formulation can treat several geometric models by changing the values of
these parameters. The inherent nonlinearities and the model geometric attributes demand for 3D FEM
approximation of the problem. An appropriate regenerative meshing scheme is developed to account for the
variety of models involved in the analysis. In the vicinity of the crack region, a mesh refinement is adopted,
while the crack surfaces are constrained with appropriate contact conditions. Typical finite element meshes
utilized in the analysis are illustrated in Fig. 2. The number of elements and nodes for each model type are
presented in Table 1. The left end of the beam is considered to be clamped, i.e. all degrees of freedom of every
node that corresponds to the left end are fixed. Two different load cases are separately applied at the tip of the
cantilever beam, i.e., twisting moment T and bending moment M, respectively. The bending moment is applied
in several aperture angles M ¼M(j), in order to simulate a rotating load on a fixed beam. The components
My ¼My(j), and Mz ¼Mz(j) of the bending moment M(j), along the directions of axes y and z, respectively,
are functions of the aperture angle. Thus, this angle represents a third global variable of the problem.
3. Contact of crack surfaces

The crack-surface interference problem is treated in this work like a classical 3D contact between
deformable but interconnected bodies at the crack front. In order to approach frictional contact between these
sub-bodies, it is assumed that possible sliding obeys Coulomb’s law of friction and that penetration between
contacting areas is not allowed. Since the frictional contact problems are inherently nonlinear and irreversible,
an incremental approach should be implemented. Primarily, the technique of obtaining the incremental finite
element equations for the general problem depicted in Fig. 1 is clarified. This well-known technique is briefly
reproduced here for reasons of completeness. Boldface symbols denote vectors and matrices, the order of
which is indicated by the context.
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Fig. 1. The geometry of the model: (a) cracked shaft subjected to bending and twisting moments, (b) straight-front crack, and (c) curved

front crack.
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The discretized nonlinear system of equations can be written as a set of algebraic equations in the form

½KT ðUÞ�fUg ¼ fFg (1)

In Eq. (1), {F} is the external force vector and {U} is the structural displacement vector, respectively. The
3D problem considered here demands for three degrees of freedom per node. If N nodes in total describe the
discretized shaft FEM model, then the dimension of the above vectors is 3N, and that of the matrix 3N� 3N.
Both are generally zero at the start of the problem. To trace the nonlinear structural response, a load stepping
procedure must be used. Assuming that the load is applied in M equal small increments of the form
fDFmg ¼ fFmg � fFm�1g, m ¼ 1; 2; . . . ;M, an incremental procedure is then set up. The incremental procedure
makes use of the fact that the solution for {Um�1} is known when the load term {Fm�1} is applied to the
structure. Such a method can yield reasonable results and guaranteed to converge if a suitably small increment
of {F} is chosen.

The application of a trial load {DFm} at the step m of the procedure yields the incremental form of Eq. (1) in
the form

½KT �fDUmg ¼ fDFmg (2)

where ½KT � is the tangent stiffness matrix, and fDUmg ¼ fUmg � fUm�1g is the increment in the structural
displacement. At any increment m must be satisfied also the equilibrium condition

fRmg ¼ fPmg � fFmg � f0g (3)
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Table 1

Modeling size information

Model type Crack depth (a/R) Number of elements Number of nodes

Straight front crack 0.2 4620 4980

0.4 4380 4712

0.6 4140 4736

0.8 4140 4444

Curved front crack 0.2 5004 5344

0.4 5004 5344

0.6 4716 5022

0.8 4716 5024

Fig. 2. Typical finite element meshes: (a) transverse crack with depth a/R ¼ 0.4, (b) slant crack with respect to y-axis (yy ¼ 451, a/R ¼ 0.6)

and (c) slant crack with respect to z-axis plane (yz ¼ 301, a/R ¼ 0.8).
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where {Rm} is the residual, and {Pm} is the vector of internal forces. The solution of the problem posed by Eqs.
(2) and (3) cannot approach directly and some form of iteration will be always required to zero the residual
and restore the equilibrium for every load step. The iterative procedure approximately achieves the solution
and some tolerance limits are set to terminate the iteration and ensure the convergence of the iterative
procedure [25].
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The crack is constituted from the surfaces IS and IIS which intersect on the crack front and may come to
contact on an interface cS, given by cS ¼ IS \ IIS. The size of cS can vary during the interaction between the
load and the structure, but usually constitutes from two parts, i.e., an adhesive (aS), and a slipping (sS) one,
depending on the friction conditions maintained between the contacting surfaces. In the open crack state, the
oS part of the crack surface subjects to traction-free condition.

The crack surfaces are defined by the local coordinate systems (jx1,
jx2,

jx3), j ¼ I, II. Both the axes jx3 define
the direction of the unit outward normal vector of the corresponding surfaces. The so-called slave–master
concept that is widely used for the implementation of contact analysis is adopted in this work for prediction of
the crack-surface interference. Assuming that the crack surface IS, is the slave, the nodes on this surface are
called slave nodes. Then the surface IIS is the master one and the nodes that belong to this are called master
nodes. Contact segments that span master nodes cover the contact surface of the structure. Therefore, the
above problem can be regarded as contact between a slave node and a point on a master segment. This point
may be located at a node, an edge, or a point of a master segment. A slave node makes contact with only one
point on the master segments, but one master segment can make contact with one or more slave nodes at each
time. For every contact pair, the mechanical contact conditions are expressed in a local coordinate system in
the direction of the average normal to the boundaries of the bodies. Lowercase symbols jum

i and j f m
i , i ¼ 1, 2, 3

denote nodal displacement and force components, respectively, defined on the local coordinate systems
(jx1,

jx2,
jx3), j ¼ I, II. For reasons of simplicity, the subscripts that indicate nodal numbers were dropped out.

Recalling the equilibrium condition, between the components of the incremental force are always
maintained by the following equations

IDf m
i þ

IIDf m
i ¼ 0; i ¼ 1; 2; 3 (4)

In the open crack state (surface oS), the incremental traction components are simplified as follows:

IDf m
i ¼ �

IIf m�1
i ; i ¼ 1; 2; 3 (5)

By the definition of adhesion, on the corresponding crack surfaces (aS), the incremental displacement
components are interconnected by the equation

Ium�1
i þIDum

i ¼
IIum�1

i þIIDum
i ; i ¼ 1; 2 (6)

When exists a gap g0 in the normal direction, then the incremental displacement component along the
normal direction is

Ium�1
3 þIDum

3 ¼
IIum�1

3 þIIDum
3 � g0 (7)

where g0 is the initial normal gap between the master and slave node of the corresponding node-pair. The slip
state does not prohibit the existence of a gap between the crack surfaces, so Eq. (7) is still valid in this case.
However, the coplanar force components are defined in terms of friction

If m�1
i þIDf m

i ¼ �mð
If m�1

3 þIDf m
3 Þ; i ¼ 1; 2 (8)

where m is the coefficient of Coulomb friction.
The constraints appearing in Eqs. (4)–(8) can be embedded in the previously reported incremental FEM

procedure if are transformed to the global coordinate system and properly assembled to the master system of
Eq. (2). Assume that the problem has been solved for the step m�1 and consequently that the total nodal
values {Um�1}, {Fm�1} are known for the whole structure. To determine the corresponding total nodal values
of the step m, the contact conditions must be satisfied first. Therefore, the iterative procedure must be applied
by initially utilizing the convergent contact status c ¼ a[s[o of the previous step m�1. The procedure initially
assumes that IDf m

i ¼ 0; i ¼ 1; 2; 3. Then, the accurate values of incremental forces can be estimated via the
iterative procedure. The contact state for every node-pair is examined according to Table 2. This table
describes criteria to check if violations involving geometrical compatibility and force continuity have occurred.
Where necessary, appropriate changes from open to contact and from adhesion to slip state, and vise versa are
made to seek the equilibrium state of contact conditions. For the node-pair closest to a change, the new
contact condition is applied. If the change is from open state to contact state, then the adhesion condition is
adjusted. When the iterative procedure is converged, the incremental nodal values {DUm}, {DFm} become
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Table 2

Definition of contact status

Assumption Decision

Open Contact

Open IIDum
3 �

IDum
3 4

Ium�1
3 �IIum�1

3 þ g0 IIDum
3 �

IDum
3 p

Ium�1
3 �IIum�1

3 þ g0

Contact If m�1
3 þIDf m

3 X0 If m�1
3 þIDf m

3 o0

Adhesion Slip

Adhesion jIf m�1
i þIDf m

i jojmð
If m�1

3 þIDf m
3 Þj; i ¼ 1; 2 jIf m�1

i þIDf m
i jXjmð

If m�1
3 þIDf m

3 Þj; i ¼ 1; 2
Slip ð

If m�1
i þIDf m

i Þð
IDf m

i �
IIDf m

i Þ40; i ¼ 1; 2 ð
If m�1

i þIDf m
i Þð

IDf m
i �

IIDf m
i Þp0; i ¼ 1; 2
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known for the whole structure. After calculating the total nodal values the procedure goes to the next step of
the load increment and continues until the final increment M is reached. Then, the solution of the problem is
evidently attained.

In order to simplify the computation, interference conditions associated with partial closing and opening of
the crack surfaces, were modeled through the slideline facility which is available in some commercial finite
element codes. Slidelines comprised two non-regular necessarily surfaces which are defined by a number of
contact segments corresponding to external faces of elements closest to the surfaces. The nodal constraint
treatment allows for adjustment of contact conditions by setting appropriate constraints. At each increment of
the procedure, this facility tracks the node pairs being nearly in contact, and adjusts the contact constraints.
This technique does not directly couples nodal degrees of freedom but introduces repellent forces between the
penetrating regions of the two surfaces. Coupling of the nodal freedoms in this manner introduces no
additional equations into the solution and the technique is sufficiently flexible to be implemented within both
explicit and implicit type of finite element codes. Therefore, the contact status between the crack surfaces can
be tracked in every step of the incremental procedure.
4. Calculation of local flexibilities

Since the torsional and bending vibrations of rotors are the most important, present analysis assumes that
the corresponding local flexibilities are also dominant in the local flexibility matrix, neglecting the cross-
coupling terms. Numerical results showed that the off-diagonal coefficients of this matrix are at least two
orders of magnitude lower than the diagonal ones, and thus are considered negligible. Therefore, the presence
of the crack can equivalently represented by a diagonal local flexibility matrix, independent of the crack
contact conditions.

The exact relationship between the fracture characteristics and the induced local flexibilities is difficult to be
determined by the strain energy approach, because, stress intensity factor expressions for this complex
geometry are not available. For the computation of the local crack compliance, a finite element method was
used. According to the point load displacement method, if at some node preferable lying on the tip of the
beam is applied the external load vector fQg ¼ fT My Mz gT, then at the same node the resulting rotations
fYg ¼ fYx Yy Yz gT are such that

cx 0 0

0 cy 0

0 0 cz

2
64

3
75

T

My

Mz

8><
>:

9>=
>;
¼

Yx

Yy

Yz

8><
>:

9>=
>;

(9)

In Eq. (9), cr, r ¼ x, y, z are the diagonal coefficients of the local flexibility matrix. Under the application of
a particular load component Qr at the r-direction, the above equation is then simplified as follows:

Yr ¼ crQr (10)
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where Yr, r ¼ x, y, z is the induced rotation, and cr is the local flexibility component that corresponds to the
particular loading mode Qr. Eq. (10) can be used for the computation of the local flexibility coefficients, as
described in the following.

When the original uncracked beam is uploaded until the load Qro, a rotation is imposed in r-direction, such
that Eq. (10) gives

Yro ¼ croQro (11)

where cro is the flexibility of the original structure. The deformation of the cracked beam when loaded at the
same node gives

Yrc ¼ crcQrc (12)

where crc is the flexibility of the cracked beam, and Qrc, Yrc the applied load and the resulting rotation,
respectively. Between the flexibilities of the original and the fractured structure holds the condition

crc ¼ cr þ cro (13)

where cr is the local flexibility due to the crack itself. Assuming that the applied load levels are of the same
magnitude, i.e. Qrc ¼ Qro ¼ Qr, after some manipulation, Eqs. (11)–(13) yield the local flexibility coefficient in
the r-direction

cr ¼
Yrc �Yro

Qr

(14)

Eq. (14) is used to compute the coefficients of the local flexibility matrix [c] utilizing the FEM results. Tip
loads Qr, r ¼ x, y, z are applied independently, and the resulting rotations Yr are evaluated. The rotations of
the original structure Qro, are evaluated for FEM models that do not present crack but have similar meshing
with the cracked models. When fractured models are examined, FEM results are computed for several values
of the design global variables. In order to predict the contact conditions occurring between the crack surfaces,
the loads are applied incrementally, though iterations yield better approximations of the solution. Therefore,
the crack breathing effect is taken into account for each loading mode and aperture angle.

5. Numerical results and discussion

The previously described numerical procedure was implemented in order to reveal the crack breathing
mechanism in rotating shafts subjected to torsional or bending loads. At each increment of the nonlinear
procedure, a finite element analysis is performed, the contact conditions are updated to confirm with contact
criteria, and the corresponding local flexibility due to the crack presence and deformation is evaluated. The
closure of the crack induces additional displacements with respect to the non-cracked rotor, and thus the
evaluation of the local flexibilities is achieved through Eq. (14). The presence of the crack is exclusively
simulated by the uncoupled local flexibilities as described in the previous section. Among the crack breathing
mechanism, the local flexibility characteristics for each particular loading mode depend on the fracture depth
and orientation. In order to elucidate the performance of the previously described numerical procedure,
computational results are presented, concerning the variation of the local flexibilities with the load aperture
angle. For the purposes of the present study and without loss of generality, steel shafts were considered with
length L ¼ 1.0m, and radius R ¼ 0.05m. The material properties were assumed to be E ¼ 210GPa for the
modulus of elasticity, and n ¼ 0.3, for Poisson’s ratio, respectively. The crack surfaces are assumed to be
smooth, the crack thickness is negligible, and when the shaft is under zero load conditions, then on the crack
surfaces traction-free conditions occur. Parametric studies were conducted by varying the crack depth until
a ¼ R, and the crack orientation slopes yy, yz with respect to the global coordinate axes y and z, respectively.
In order to evaluate the accuracy of the proposed models and the sensitivity of the solution to the involved
parameters, an extensive number of numerical tests were conducted varying element size, mesh density crack
size and geometry. The analysis shows that for double mesh density of the proposed one, there is convergence
in the results for all cases, since the deviation was less than 1.5%. Numerical experimentation shows that for
the smooth crack surfaces examined, the results are very little affected by the values of the coefficient of
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friction. Hence, results presented in the following for a small friction coefficient (m ¼ 0.1) should be reason-
ably unaffected for most of the examined cases. The local flexibility coefficients are presented in the
normalized form

Cr ¼
ER3

ð1� n2Þ
cr; r ¼ x; y; z (15)

For reasons of comparison, Fig. 3 depicts numerical results for the case of a gaping straight front crack,
when is independently loaded in pure bending Mz, i.e. j ¼ 901 or twisting moment T. The application
of bending moment for this transversely fractured structure imposes the bending mode local flexibility Cz
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Fig. 3. Flexibility of a transverse straight front crack subjected to traction-free conditions: (a) bending flexibility coefficient Cz and

(b) torsional flexibility coefficient Cx.
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(Fig. 3a). When in the same fractured structure, is applied twisting moment, then only the twisting coefficient
is Cx exists (Fig. 3b). Good correlation between the present results and those previously semi-analytical or
experimental ones, reported in the literature [26–28] is observed. Fig. 4 illustrates predictions of the crack
closure portion for a transverse crack with depth a/R ¼ 0.8, when the shaft is loaded in bending moment only,
versus the aperture angle. Fig. 4a shows the crack closure evolution for a straight front crack, and Fig. 4b for a
curved front crack, respectively. As the aperture angle increases, the crack closure portion increases in both
cases examined. On full load reversal, a very small portion of the crack surface along the crack front remains
always open. The shape of the contact surface and its portion clearly depends on the shape of the crack. This
fact is expected to impose differences between the local flexibilities of different crack shapes. When the crack is
slant, smaller portions of the crack surfaces are in contact. Fig. 5 depicts this situation for cracks having slope
yz with respect to the z-axis (yy ¼ 01), loaded in bending Mz (or j ¼ 901). The crack slope yz seems to affect
slightly the size and shape of the contact area between the crack surfaces for both of the crack fronts under
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investigation. The cases of crack orientation subjected to bending load that are not illustrated here present
similar behavior with respect to the crack-surface contact. For cracks subjected to twisting moment, the
contact area does not generally change during the shaft rotation. Fig. 6 depicts this fact when the crack slope is
defined by the angles yy ¼ 451 and yz ¼ 01. Fig. 7 illustrates the dimensionless local flexibility coefficients in
terms of the crack depth (a/R), when the crack slope yy is variable while yz ¼ 01. If the crack is loaded with the
component Mz (or j ¼ 901) of the bending moment only, then the coefficient Cz exists only (Fig. 7a).
Alternatively, the loading with the My (or j ¼ 01) component of bending moment alone, enforces the
existence of the Cy coefficient (Fig. 7b). Fig. 8 depicts relevant numerical results in the case of a crack with
variable slope yz while yy ¼ 01. Similarly, the bending component Mz (or j ¼ 901) enforces the existence of the
coefficient Cz (Fig. 8a), while the bending component My enforces the existence of the coefficient Cy (Fig. 8b).
As expected, local flexibility coefficients increase with the crack depth. In both cases, the curved crack front
results in smaller values of the corresponding flexibilities. Although these coefficients depend on the crack
depth (a/R) and the shape of the crack front, the crack slope slightly affects them. Figs. 7 and 8 illustrate
extreme values of local flexibility coefficients Cz and Cy that correspond to specific limit values of the aperture
angle, i.e. j ¼ 01 and 901. For intermediate values, local flexibilities vary, as reported in the following. Fig. 9
shows the dimensionless coefficient Cx, when a slant crack is subjected to twisting moment T, versus the crack
depth. In this case, the shape of the crack front seems to affect in a much more manner the twisting local
flexibility, than the previous bending modes. As the crack is oriented with higher yy crack angles (Fig. 9a) the
local flexibility decreases for the same crack depth due to the partial closure of crack surfaces (Fig. 6). As the
yz crack angles increase (Fig. 9b), there is a important decrease of the local flexibility for the same crack depths
because of the full closure of the crack surfaces, in contrast with the transverse case, in which the crack is fully
open. Fig. 10 presents the variation of the flexibility coefficient Cy when a transversely cracked shaft is
subjected to bending moment M ¼M(j). The numerical results are plotted for a period that corresponds to
one revolution of the shaft. For better reasons of understanding, the local flexibility is plotted with phase lag
p/2 that corresponds to the application only of the Mz component of bending moment or j ¼ 901. That is, the
evolution of the local flexibility is progressing from the full open condition of the crack.

The same figure illustrates numerical [12], theoretical [29] and experimental [30] results from the literature
for straight-fronted edge crack and crack depth a/R ¼ 1.0. As it is shown, the values of local flexibility for
crack depth a/R ¼ 1.0, from FEM analysis are smaller than the other methods, when the crack is open. The
experimental results are obtained for notched shaft which is more flexible than the cracked shaft. As the crack
closes the FEM results are greater than the others. This is explained by the crack contact area (Fig. 4), which
differs and is generally smaller than the area assumed by the theoretical approaches for the same edge
orientation. The impossibility of these approximations to predict the crack closure correctly is the main reason
Fig. 6. Contact area between crack surfaces when the shaft is loaded in torsion: (a) straight front crack and (b) curved front crack.
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that these yield comparable results with the present ones only on the regions of partially opening portion of
the crack, i.e., between 0:5pojop or 2pojo2:5p. These results show that the switching model of the crack
breathing is not adequate for the modeling of the time variation of the crack breathing mechanism. Besides the
impossibility of comparison of the present results to those in Ref. [31], it could be noticed that for the
experimental results obtained from a rotor system that includes a beam with a realistic fatigue crack, the same
trend with the corresponding results of the proposed method is observed. By the way the same trend is also
shown by the data of Ref. [12] (Fig. 10(a)) and the small discrepancy yields from the difference in formulation.
The variation of the coefficient Cy depends significantly on the crack depth. For small crack depths, the crack
does not open regularly once per revolution, but contact is observed twice per revolution. The second contact
state yields smaller compliance than the regular contact. This type of deformation of crack surfaces is
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characteristic of the crack and depends on its geometry and loading mode. Fig. 10b depicts this fact for the
case of curved front transverse cracks loaded in bending. The Cy values are smaller, in this case, than the
straight-fronted crack. This fact can be explained from the comparison of the areas of straight and curved
front cracks which have the same depth. The portion of the crack surface being on contact is always higher for
the curved front crack (Fig. 4). For this fracture case, where the crack is transverse and the shaft is loaded by
the bending moment M ¼M(j) alone, reasons of symmetry indicate that Cz ¼ Cy, with appropriate phase
shift. Thus on the plane (x, z) the same variation of the local flexibility occurs. The effect of breathing
mechanism on the local flexibility Cy, when a slant crack exists, is illustrated in Fig. 11. As previously, the shaft
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is loaded at the tip by the bending moment M ¼M(j). Numerical results are plotted for fixed crack depth
a/R ¼ 0.8, versus the crack slope. Fig. 11 depicts the case where yz ¼ 0 for various values of the slope angle yy.
If the crack forms angle yy ¼ 0 with respect to the plane (y, z), then the same variation of Cy occurs as that
shown in Fig. 11. However, the values of Cy are delaying by a phase shift equal to 901 with respect to the
values shown in Fig. 11. As the crack slope increases, secondary modes of crack contact are exaggerated.
These results show that the slope of the crack enforce lower range of the local flexibility variation. The
previously illustrated numerical results reveal the influence of the crack breathing mechanism on the time
variation of the local flexibilities. The crack breathing depends on the fracture characterizing parameters and
the applied load modes. The shaft rotation complicates the breathing mechanism. For the simple loading cases
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examined, which act independently, complicated crack breathing mechanisms are observed. The predicted
crack contact implies constant flexibility coefficients or phase shifts between the varying ones, depending on
the crack slope and the shape of its front. More or less, secondary contacts occur, not once per revolution, but
twice per revolution. These secondary flexibilities are lower than the primary ones which occur once per
revolution. This fact is known from experimental data analysis [5,11,19], but here is resolved in terms of crack
contact mechanism during a variable loading. Unfortunately, these data cannot be compared directly to the
present ones, due to the presence of the flywheel, the influence of its weight and the inertia terms. Careful
examination of the deformation of the shaft during the loading and animation of the finite element results
implies these secondary contacts, which emanate from the interaction between the temporal deformed shape of
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the structure, the loading, and the deformation of the crack surfaces. The above parametric study reveals that
the torsional local flexibility coefficient Cx is time invariant, while the bending mode local flexibility
coefficients are coupled (CzðjÞ ¼ Cyðjþ DjÞ;Dj, being the phase shift), and dependent on the aperture
angle. If the bending is produced by the weight of the shaft itself, or general load cases are applied including
shearing and axial forces, then it is expected the development of a more complicated breathing mechanism.
Previous analysis gives encouraging results to adopt nonlinear finite element procedures in the dynamics of
cracked rotors including temporal crack-surface interference as part of the analysis.

The proposed method is a quasi-static approach of the crack breathing mechanism applied to stationary
shafts. This is the first step in the approach of the dynamic response of rotating shaft. In this case, the FEM
equations representing the motion of a rotating shaft may be solved considering at each time step the quasi-
static approximation just discussed. Then, the effect of inertia terms, the weight of the shaft or the externally
applied loading to the crack breathing mechanism can be studied. This is a problem elaborated this time by the
authors and results will be published in the near future. Authors believe that this technique may be the basis
for the approximation of nonlinear dynamic response of rotors associated with crack breathing effects, for
applications of non-destructive methods for crack detection.

6. Conclusions

A nonlinear finite element procedure has been presented for the simulation of the quasi-static crack
breathing mechanism in rotating shafts. This procedure can predict effectively the contact evolution between
the crack surfaces with the crack rotation angle. The approach concerns cantilever beamlike shafts with slant
cracks, loaded in torsion or bending. At each increment of the procedure, a finite element analysis is
performed and contact conditions on the crack surfaces are updated to confirm with contact criteria. Local
flexibilities due to the crack are evaluated and results are presented in dimensionless form. The method yields
results with reasonable accuracy as compared with experimental and theoretical results published in the
literature. The evolution of portions of crack-surface contact is revealed and numerical results are illustrated
showing the shape of the contact area. The crack orientation seems to play a significant role in the crack
breathing mechanism. Depending on the relative crack slope with respect to the load direction, the crack
remains always open or breaths. Under the open crack condition, the local flexibilities remain constant along
with the shaft rotation angle. Among the crack orientation, the crack breathing behavior depends on the depth
of the crack and the shape of the crack front.
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